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ONLINE APPENDIX

The following theorem extends Theorem 5.3 by allowing possibly empty-valued choice correspondences.

Theorem B.1. Let (X,X) be any choice environment, and C a choice correspondence on X. If C is
rationalized by at least one preference structure on X, then∨

P(C) = %C .

Proof of Theorem B.1.

Throughout the proof, we will denote RC by R to simplify the notation. (That is, for any x and
y in X, we have {x} = C{x, y} iff x R> y, and {x, y} = C{x, y} iff x R= y.) Consequently, �C

⊆ R> and ∼C ⊆ R=. We will use these facts below as a matter of routine. Also, when % ∈ P(C), we
write M(S) = MAX(S,%) for any S ∈ X. First, we borrow the following results, each corresponds to
Lemma A.5, Claim 1, and Claim 3, from the proof of Theorem 5.3. We note that the proofs of these
results do not rely on the assumption that the choice correspondence C is nonempty-valued.

Lemma B.2. For any finite S ∈ X, {x} = C(S) implies {x} = C{x, y} for every y ∈ S.

Lemma B.3. R is %C-transitive.

Lemma B.4. For any % ∈ P(C), � ⊆ �C and ∼ ⊆ ∼C .

Next, we extend Lemma A.6 and Claim 2 given in the proof of Theorem 5.3, the proofs of which
rely on the assumption of nonempty valued choice correspondences, to the present setting.

Lemma B.5. For any S ∈ X and x ∈ S,

x %C y implies C(S ∪ {y}) ∩ S = C(S).

Proof. Take any S ∈ X and any % ∈ P(C). Suppose that x ∈ S and x %C y. If x ∼C y, then

z ∈ C(S) ⇔ z ∈ C(S ∪ {x}) ⇔ z ∈ C(S ∪ {y}) ⇔ z ∈ C(S ∪ {y}) ∩ S

for all z ∈ S, so we obtain C(S) = C(S ∪ {y}) ∩ S at once. Assume x �C y in what follows. Then,
x R> y, so y % x cannot hold (because R extends %). Besides, if there is a z ∈ S with z � y, then
C(S ∪ {y}) ⊆ S, so, by Lemma A.4, C(S ∪ {y}) = C(S), and we are done. It remains to consider the
case where (x, y) ∈ Inc(%) and y ∈M(S ∪ {y}).

We show that, if C(S ∪ {y}) = ∅, then C(S) = ∅ (and thus the claim of the lemma holds in
this case). To prove this, assume C(S ∪ {y}) = ∅. Since y ∈ M(S ∪ {y}), by Proposition 4.1, there
exists a y′ in M(S ∪ {y}) such that y′ tran(R|M(S∪{y})

> y. (Note that y′R> y and y′ ∈ M(S).) Fix
any z ∈ M(S), and first suppose that z /∈ M(S ∪ {y}) and z tran(R|M(S)) y

′. Then, there exists a
k ∈ N and a0, . . . , ak in M(S) such that y � z = a0 R · · · R ak = y′. Let ` = max{i ∈ [k] : y � ai}.
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Then, we have ` < k, for otherwise y � ak = y′ and thus yR> y′, a contradiction. Moreover, by
the construction of `, {a`+1, . . . , ak} ⊆ M(S ∪ {y}) and y � a` R a`+1 R · · · R ak = y′. Then, by
%-transitivity of R, yR a`+1 R · · · R ak = y′, that is, y tran(R|M(S∪{y})) y

′, a contradiction. Thus,
we have shown that z /∈M(S ∪ {y}) implies y′ tran(R|M(S))

> z. Next, suppose that z ∈M(S ∪ {y}).
As C(S∪{y}) = ∅, there exists a z′ ∈M(S∪{y}) with z′ tran(R|M(S∪{y}))

> z. Here, we may w.l.o.g.
assume that z′ tran(R|M(S∪{y})) y

′ (relabelling if necessary). By contradiction, let z tran(R|M(S)) z
′.

Then, there exist a k ∈ N and a0, . . . , ak ∈M(S) such that z = a0 R . . . R ak = z′, where y � ai must
hold for at least one i ∈ [k] (as z′ tran(R|M(S∪{y}))

> z). Define ` = max{i ∈ [k] : y � ai}. Then, ` < k,
for ` = k would imply y � z′ tran(R|M(S∪{y})) y

′ and thus y tran(R|M(S∪{y})) y
′, a contradiction. But,

then, we have {a`+1, . . . , ak} ⊆ M(S ∪ {y}) and y � a` R a`+1 R · · · R ak = z′. By %-transitivity
of R, this implies that yR a`+1 R · · · R ak = z′, that is, y tran(R|M(S∪{y})) z

′ tran(R|M(S∪{y})) y
′,

which again yields a contradiction. A conclusion: z′ tran(R|M(S))
> z. Hence, in all contingencies, we

have proved that there exists a z′ ∈M(S) with z′ tran(R|M(S))
> z for an arbitrarily fixed z ∈M(S).

In view of Proposition 4.1, this completes to verify that C(S) = ∅. For the rest of the proof, we shall
thus assume that C(S ∪ {y}) 6= ∅.

Since x �C y implies that y does not belong to C(S ∪ {y}), we have

C(S ∪ {y}) ⊆M(S ∪ {y}) ∩ S ⊆M(S).

Now, we claim that C(S ∪ {y}) is an R-highset in M(S) To see this, take any %-maximal z in S that
does not belong to C(S ∪ {y}). If z ∈ M(S ∪ {y}), then we clearly have C(S ∪ {y}) R> z (because
C(S∪{y}) is an R-highset in M(S∪{y}). If z /∈M(S∪{y}), then, since y ∈M(S∪{y})\C(S∪{y}),
we have C(S∪{y}) R> y � z, which implies C(S∪{y}) R> z by Lemma A.3. Conclusion: C(S∪{y})
is an R-highset in M(S). As C(S ∪ {y}) is, obviously, an R-cycle, it follows from Corollary 4.2 that
C(S ∪ {y}) = C(S). �

Lemma B.6. %C is transitive.

Proof. The same proof for Claim 2 works, but we invoke Lemma B.5 instead of Lemma A.6. �

We now turn to the proof of Theorem B.1. In what follows, we write %∗ =
∨

P(C) for notational
brevity. It follows from Theorem 5.2 that %∗ ∈ P(C) and hence we obtain %∗ ⊆ %C by Lemma B.4.
So, we only need to show that %C ⊆ %∗. Toward a contradiction, suppose otherwise. In particular,
in the first half of the proof, let us we assume that �C * �∗, that is, that there exist a, b ∈ X with
a �C b while a �∗ b does not hold. (Obviously, a ∼∗ b does not hold either by Lemma B.4.) Define a
binary relation D on X by

D = %∗ ∪ (a↑ × b↓),

where a↑ = {x ∈ X : x %∗ a} and b↓ = {x ∈ X : b %∗ x}. Then, D is obviously a proper superrelation
of %∗ (as aD b), and moreover it is straightforward to show that D is a preorder on X.

Claim 1. D extends %∗.

Proof of Claim 1. Suppose that x �∗ y, but xB y does not hold. As %∗ ⊆ D, it then follows that
y D x. By definition of D, this implies that y %∗ a and b %∗ x. But, then, b %∗ x �∗ y %∗ a and thus
b �∗ a. This is a contradiction to a %C b by Lemma B.4. �

Claim 2. R extends D.

Proof of Claim 2. First, suppose that xD y. If x %∗ y, then we have xR y at once (as %∗ extends
R). Otherwise, we have x %∗ a �C b %∗ y, which implies x %C a �C b %C y by Lemma B.4 and thus
x �C y by Lemma B.6. So, we obtain x,R> y in this case. Next, suppose that xB y. If x %∗ y, then
x ∼∗ y cannot hold (for otherwise yDx), and therefore we have x �∗ y and xR> y. If x %∗ y is false,
then we have x %∗ a �C b %∗ y, in which case we have already proved that xR> y follow. �

Claim 3. R is D-transitive.

2



Proof of Claim 3. Assume xR y D z for some x, y, z ∈ X. If y %∗ z, then we have xR z at once
by %∗-transitivity of R. Otherwise, we have xR y %∗ a %C b %∗ z. Then, xR a %C b %∗ z by
%∗-transitivity of R, which, in turn, implies xR b %∗ z by Lemma B.3. Applying %∗-transitivity of
R once again yields xR z. An analogous argument shows that xD yR z implies xR z. �

Claim 4. C(S) ⊆ MAX(S,D) for any S ∈ X.

Proof of Claim 4. Take any S ∈ X and x in C(S), and suppose that x /∈ MAX(S,D) by contra-
diction. Then, there exists a y ∈ S with y B x. Note that y %∗ x must be false, for, y �∗ x would
imply x /∈ C(S), while y ∼∗ x would imply xD y. So, it follows that

y %∗ a �C b %∗ x. (1)

Applying Lemma A.4 and Lemma B.5 along with (1) yields C(S) = C(S∪{a})∩S = C(S∪{a, b})∩S.
But, then, x ∈ C(S ∪ {a, b}), and thus b ∈ C(S ∪ {a, b}) by Proposition 4.7. This is a contradiction
as a �c b. �

Claim 5. (D,R) rationalizes C.

Proof of Claim 5. Take any S ∈ X, and put A = MAX(S,D) and B = MAX(S,%∗). Then, we
have C(S) =©(B,R), while we wish to show that C(S) =©(A,R). Moreover, it follows from Claim
1 and Claim 4 that C(S) ⊆ A ⊆ B. If A = B, there is nothing to prove. So, assume that B\A 6= ∅.

First, suppose that C(S) 6= ∅. In this case, since C(S) is obviously an R-cycle, it is enough by
Corollary 4.2 to verify that C(S) is an R-highset in A. But this follows at once because C(S) is an
R-highset in B. (Indeed, if x ∈ C(S) and y ∈ A\C(S), then y ∈ B\C(S), and hence xR> y.)

Next, consider the case where C(S) = ∅. The assumption that B\A 6= ∅ asserts that there exist
x ∈ B and y ∈ S with y B x. As y %∗ x is false (for, y �∗ x would imply x /∈ B, while y ∼∗ x
would imply xD y), we have condition (1). Then, by applying Lemma A.4 and Lemma B.5 on (1) as
in the proof of Claim 4, we obtain C(S ∪ {a, b}) ∩ S = C(S) = ∅. By Proposition 4.7, this in turn
implies that a /∈ C(S ∪{a, b}) (as y /∈ C(S ∪{a, b})). Also, b /∈ C(S ∪{a, b}) as a �C b. A conclusion:
C(S ∪ {a, b}) = ∅. In view of Proposition 4.1, hence, we have

max(B′, tran(R|B′)) = ∅, (2)

where B′ = MAX(S∪{a, b},%∗). Take any z ∈ A. Obviously, z ∈ B (as A ⊆ B). Moverover, a �∗ z is
false, for otherwise y �∗ z by (1), and thus z /∈ B, a contradiction. Also, b �∗ z is false, for otherwise
y D b �∗ z (observe that (1) implies y D b) and thus y B z (as D extends %∗), which implies that
z /∈ A, a contradiction. So, we conclude that z ∈ B′, thus verifying that A ⊆ B′. Now, for any z ∈ A,
(2) implies that there exist z′ and z′′ in B′ such that z′′ tran(R|B′)> z′ tran(R|B′)> z. We claim that
either z′ or z′′ must belong to A. Suppose otherwise. Then, there exists a w ∈ S such that w B z′.
Since w %∗ z′ is false (for, w �∗ z′ would imply z′ /∈ B′, while w ∼∗ z′ would imply z′ D w), we have
w %∗ a �C b %∗ z′. As z′ ∈ B′, b �∗ z′ cannot hold, and thus it follows that b ∼∗ z′. The analogous
resoning applies to derive b ∼∗ z′′ from z′′ ∈ B′\A. But, then, z′ ∼∗ z′′, and thus z′R= z′′. This is a
contradiction as z′′ tran(R|B′)> z′. Noting that tran(R|B′) is a preorder, we have shown that, for any
z ∈ A, there exists a z′ ∈ A such that z′ tran(R|B′)> z and thus z′ tran(R|A)> z. (Indeed, as A ⊆ B′,
z tran(R|A) z′ would imply z tran(R|B′) z′.) Equivalently,

max(A, tran(R|A)) = ∅.

In view of Proposition 4.1, we conclude that C(S) =©(A,R) = ∅, as desired. �

It follows from Claim 2 and Claim 3 that (D,R) is a preference structure on X. Then, by Claim
5, D ∈ P(C), and thus D ⊆ %∗. But this is a contradiction as D is a proper superrelation of %∗.
This completes the first half of the proof of Theorem B.1. In the rest of the proof, let us derive a
contradiction by assuming that %C * %∗ and �C ⊆ �∗. These assumptions imply that there exist
a′, b′ ∈ X with a′ ∼C b′ while a′ %∗ b′ does not hold. (Observe that b′ %∗ a′ may not hold either, for
otherwise b′ �∗ a′ and a′ ∼C b′, a contradiction to Lemma B.4.) Define a binary relation D′ on X by

D′ = %∗ ∪ (a′↑ × b′↓) ∪ (b′↑ × a′↓).
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Again, it is obvious that D′ is a proper superrelation of %∗.

Claim 6. D′ is a preorder.

Proof of Claim 6. It is enough to verify transitivity of D′. Suppose that xD′ yD′ z. By symmetry,
we consider the following exhaustive four cases: (i) x %∗ y %∗ z, (ii) x %∗ y and (y, z) ∈ (a′↑ × b′↓),
(iii) (x, y) ∈ (a′↑ × b′↓) and (y, z) ∈ (b′↑ × a′↓), and (iv) (x, y) ∈ (a′↑ × b′↓) and (y, z) ∈ (a′↑ × b′↓). In
case (i), we have x %∗ z and thus xD′ z at once. In case (ii), we have x %∗ y %∗ a′ and b′ %∗ z, and
hence (x, z) ∈ (a′↑ × b′↓) ⊆ D. In case (iii), x %∗ a′ %∗ z, so x %∗ z and xD′ z follow. Case (iv) never
arise, for otherwise b′ %∗ y %∗ a′ and thus b′ %∗ a′, a contradiction. �

Claim 7. R is D′-transitive.

Proof of Claim 7. Suppose that xR yD′ z. If y %∗ z, then xR z follows at once by %∗-transitivity
of R. If (y, z) ∈ (a′↑ × b′↓), then y %∗ a′ ∼C b′ %∗ z, which implies y %C a′ ∼C b′ %C z by Lemma
B.4 and thus y %C z by Lemma B.6. Then, xR z follows by Lemma B.3. By symmetry, xR y and
(y, z) ∈ (b′↑×a′↓) imply xR z as well. An analogous argument shows that xD′ yR z implies xR z. �

Claim 8. R extends D′. Moreover, B′ ⊆ �C .

Proof of Claim 8. Suppose that xD′ y. If x %∗ y, then we have xR y at once (as R extends %∗).
If (x, y) ∈ (a′↑ × b′↓), then x %C y follows as shown in the proof of Claim 7, but this implies xR y.
Similarly, xR y follows when (x, y) ∈ (b′↑ × a′↓). Next, suppose that x B′ y. If x %∗ y, then x ∼∗ y
is false (for otherwise y D′ x), and thus we have x �∗ y, so x �C y by Lemma B.4 and xR> y. If
(x, y) ∈ (a′↑ × b′↓), then

x %∗ a′ ∼C b′ %∗ y. (3)

Here, in (3), at least one of x %∗ a′ or b′ %∗ y must hold strictly, for otherwise y ∼∗ b′ ∼C a′ ∼∗ x
and thus y D′ x, a contradiction. Then, applying Lemma B.4 and Lemma B.6 on (3) obtains x �C y
and thus xR> y as we sought. An analogous proof shows that x B′ y and (x, y) ∈ (b′↑ × a′↓) imply
x �C y and xR> y. This completes to prove that R extends D′. In the latter half of this proof, we
showed that xB′ y implies x �C y in all contingencies. Hence, B′ ⊆ �C . �

Claim 9. �∗ = B′.

Proof of Claim 9. Take any x, y ∈ X with x �∗ y. Then, xD′y at once by definition of D′. Suppose
that yD′ x to derive a contradiction.. Since y %∗ x is false, we must have either (y, x) ∈ (a′↑ × b′↓) or
(y, x) ∈ (b′↑ × a′↓). In the former case, we have b′ %∗ x �∗ y %∗ a′ and thus b′ �∗ a′, a contradiction.
An analogous argument derives a contradiction, a′ �∗ b′, in the latter case as well. Hence, we conclude
that xB′ y, and �∗ ⊆ B′. Conversely, if B′ * �∗, then �C * �∗ by Claim 8, which is a contradiction
to the ongoing hypothesis. The proof is complete. �

It follows from Claims 6 through 8 that (D′,R) is a preference structure on X. By Claim 9, we
have MAX(S,%∗) = MAX(S,D′) for all S ∈ X, implying that D′ ∈ P(C). Hence, D′ ⊆ %∗, for %∗ is
the largest preorder in P(C). A necessary contradiction is derived as D′ is a proper superrelation of
%∗. This completes the proof of Theorem B.1. �

The following result complements the remark given for Theorem 5.4. Recall that, where C is a
choice correspondence on k(X), a binary relation D on X is defined by xBy iff there exist a k ∈ N and
z1, . . . , zk in X such that (i) yRC z1 RC · · · RC zk RC x, (ii) y ∈ C{y, z1, . . . , zk}, (iii) there exists an
S ∈ k(X) with y ∈ S and {x, z1, . . . , zk} ⊆ C(S), and (iv) y /∈ C{x, y, z1, . . . , zk}.

Theorem B.6. Let X be a topological space, and let C be the choice correspondence on k(X)
rationalized by a continuous preference structure (%,R) on X. Then,∧

P(C) = tran(D) ∪4X .

Proof of Theorem B.6.
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Throughout the proof, we denote R = RC and %min
C = tran(D) ∪4X for notational brevity.

Claim 1. If xB y, then x �′ y for any %′ ∈ P(C).

Proof of Claim 1. Let x B y, so that the conditions (i) through (iv) of the definition of B hold.
Take any %′ ∈ P(C). Then, (ii) implies that no zk, k = 1, . . . ,m, �-domnates y, and (iii) implies that
{x, z1, . . . , zm} ⊆ MAX({x, y, z1, . . . , zm},%). So, if x � y is false, then MAX({x, y, z1, . . . , zk},%) =
{x, y, z1, . . . , zk}. But, then, (i) implies that y belongs to the top-cycle of this set, which contradicts
with (iv). So, we conclude that x � y. �

Claim 2. For any %′ ∈ P(C), %′ is an extension of %min
C .

Proof of Claim 2. By Claim 1, B ⊆ �′ and thus tran(B) ⊆ �′ as �′ is transitive. This inclusion
implies that tran(B) is an asymmetric and transitive binary relation and %min

C is a partial order with
tran(B) as its strict part. Clearly, 4X ⊆ ∼′, and hence %′ extends %min

C = tran(B) ∪4X . �

Claim 3. (%min
C ,R) is a preference structure on X.

Proof of Claim 3. Since % extends %min
C by Claim 2, while R extends %, it readily follows that R

extends %min
C . If x %min

C yR z, then x % yR z, and thus xR z. Similarly, xR y %min
C z implies xR z.

Therefore, R is %min
C -transitive. �

Claim 4. (%min
C ,R) rationalizes C.

Proof of Claim 4. Take any S ∈ k(X). By Claim 2, we know

C(S) ⊆ MAX(S,%) ⊆ MAX(S,%min
C ).

Since C(S) is an R-cycle by the representation, we only need to show that C(S) is an R-highset in
MAX(S,%min

C ). By contradiction, suppose that there exist z ∈ C(S) and y ∈ MAX(S,%min
C ) \ C(S)

such that
yR z. (4)

As C(S) is an R-highset in MAX(S,%), if y ∈ MAX(S,%), then zR> y, and we derive a contradiction
to (4). So, suppose that y /∈ MAX(S,%). Then, there exists an x ∈ MAX(S,%) such that x � y. If
x /∈ C(S), then zR> x � y and hence zR> y, a contradiction to (4). So, let x ∈ C(S) for the rest of
the proof. Since z ∈ C(S), x ∈ C(S) and C(S) is an R-cycle, there exists a finite sequence z1, . . . , zk
in C(S) such that

yR z = z1 R z2 R · · · R zk Rx. (5)

We know that x � y. If there are z` such that z` � y, then find the smallest `∗ with z`∗ � y, and
relabel x := z`∗ and consider the sequence z1, . . . , z`∗−1. (As yR z1, we have `∗ > 1.) By doing so, we
can w.l.o.g. assume that z` � y holds for no `. As y can �-dominates no z` either (since each z` is a
member of C(S)), MAX({y, z1, . . . , zk},%) = {y, z1, . . . , zk}, and hence it follows from (5) that

y ∈ C({y, z1, . . . , zk}). (6)

Moreover, by construction,
{x, z1, . . . , zk} ⊆ C(S) and y ∈ S. (7)

Lastly, we have
y /∈ C({x, y, z1, . . . , zm}) (8)

as x � y. By comparing the conditions (5)-(8) with (i)-(iv) of the definition of B, it follows that xBy.
But this is a contradiction since y ∈ MAX(S,%min

C ). The proof is complete. �

By Theorem 5.4,
∧
P(C) ∈ P(C), which in turn implies that %min

C ⊆
∧

P(C) by Claim 2. Con-
versely, Claim 3 and Claim 4 imply that %min

C ∈ P(C), and thus
∧
P(C) ⊆ %min

C since
∧

P(C) is the
smallest preorder in P(C). Hence,

∧
P(C) = %min

C , completing the proof of Theorem B.6. �
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